Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38602637

RESUMEN

People are increasingly using black soldier fly larvae (BSFL) as a sustainable waste management solution. They are high in protein and other essential nutrients, making them an ideal food source for livestock, poultry, and fish. Prior laboratory studies with BSFL developed on pure mushroom root waste (MRW) showed poor conversion efficiency compared to a regular artificial diet. Therefore, we mixed the nutrient-rich soybean curd residues (SCR) with MRW in different ratios (M2-M5). Pure mushroom root waste (M1, MRW 100%) had the lowest survival rate (86.2%), but it increased up to 96.9% with the SCR percentage increasing. M1 had the longest developmental period (31.1 days) and the lowest BSFL weight (7.4 g). However, the addition of SCR reduced the development time to 22.0 and 21.5 days in M4 (MRW 40%, SCR 60%) and M5 (MRW 20%, SCR 80%), respectively, and improved the larval weight to 10.9 g in M4 and 11.8 g in M5. Other groups did not have as much feed conversion ratio (FCR) (8.4 for M4 and M5), bioconversion (M4 5.4%; M5 5.9%), or lipid content (M4 25.2%; M5 24.3%). These mixtures did. Compare this to M1. We observed better results, with no significant differences between the M4 and M5 groups and their parameters. In the present study, our main target was to utilize more MRW. Therefore, we preferred the M4 group in our nutritional and safety investigation and further compared it with the artificial diet (M7). The heavy metals and essential amino acids (histidine 3.6%, methionine 2.7%, and threonine 3.8%) required for human consumption compared to WHO/FAO levels showed satisfactory levels. Furthermore, fatty acids (capric acid 1.9%, palmitic acid 15.3%, oleic acid 17.3%, and arachidonic acid 0.3%) also showed higher levels in M4 than M7. The SEM images and FT-IR spectra from the residues showed that the BSFL in group M4 changed the structure of the compact fiber to crack and remove fibers, which made the co-conversion mixture better.

2.
Nano Lett ; 24(12): 3719-3726, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38484387

RESUMEN

Mixed-halide CsPb(Br/I)3 perovskite quantum dots (QDs) are regarded as one of the most promising candidates for pure-red perovskite light-emitting diodes (PeLEDs) due to their precise spectral tuning property. However, the lead-rich surface of these QDs usually results in halide ion migration and nonradiative recombination loss, which remains a great challenge for high-performance PeLEDs. To solve the above issues, we employ a chelating agent of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid hydrate (DOTA) to polish the lead-rich surface of the QDs and meanwhile introduce a new ligand of 2,3-dimercaptosuccinic acid (DMSA) to passivate surface defects of the QDs. This synchronous post-treatment strategy results in high-quality CsPb(Br/I)3 QDs with suppressed halide ion migration and an improved photoluminescence quantum yield, which enables us to fabricate spectrally stable pure-red PeLEDs with a peak external quantum efficiency of 23.2%, representing one of the best performance pure-red PeLEDs based on mixed-halide CsPb(Br/I)3 QDs reported to date.

3.
Adv Mater ; : e2312482, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38380797

RESUMEN

Near-Infrared (NIR) light emitting metal halides are emerging as a new generation of optical materials owing to their appealing features, which include low-cost synthesis, solution processability, and adjustable optical properties. NIR-emitting perovskite-based light-emitting diodes (LEDs) have reached an external quantum efficiency (EQE) of over 20% and a device stability of over 10,000 h. Such results have sparked an interest in exploring new NIR metal halide emitters. In this review, several different types of NIR-emitting metal halides, including lead/tin bromide/iodide perovskites, lanthanide ions doped/based metal halides, double perovskites, low dimensional hybrid and Bi3+ /Sb3+ /Cr3+ doped metal halides, are summarized, and their recent advancement is assessed. The characteristics and mechanisms of narrow-band or broadband NIR luminescence in all these materials are discussed in detail. Also, the various applications of NIR-emitting metal halides are highlighted and an outlook for the field is provided.

4.
Neuroradiology ; 66(5): 797-807, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38383677

RESUMEN

PURPOSE: We aimed to determine the feasibility of using DKI to characterize pathological changes in nonarteritic anterior ischemic optic neuropathy (NAION) and to differentiate it from acute optic neuritis (ON). METHODS: Orbital DKI was performed with a 3.0 T scanner on 75 patients (51 with NAION and 24 with acute ON) and 15 healthy controls. NAION patients were further divided into early and late groups. The mean kurtosis (MK), axial kurtosis (AK), radial kurtosis (RK), mean diffusivity (MD), fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD) were calculated to perform quantitative analyses among groups; and receiver operating characteristic curve analyses were also performed to determine their effectiveness of differential diagnosis. In addition, correlation coefficients were calculated to explore the correlations of the DKI-derived data with duration of disease. RESULTS: The MK, RK, and AK in the affected nerves with NAION were significantly higher than those in the controls, while the trend of FA, RD, and AD was a decline; in acute ON patients, except for RD, which increased, all DKI-derived kurtosis and diffusion parameters were significantly lower than controls (all P < 0.008). Only AK and MD had statistical differences between the early and late groups. Except for MD (early group) and FA, all other DKI-derived parameters were higher in NAION than in acute ON; and parameters in the early group showed better diagnostic efficacy in differentiating NAION from acute ON. Correlation analysis showed that time was negatively correlated with MK, RK, AK, and FA and positively correlated with MD, RD, and AD (all P < 0.05). CONCLUSION: DKI is helpful for assessing the specific pathologic abnormalities resulting from ischemia in NAION by comparison with acute ON. Early DKI should be performed to aid in the diagnosis and evaluation of NAION.


Asunto(s)
Neuritis Óptica , Neuropatía Óptica Isquémica , Humanos , Neuropatía Óptica Isquémica/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Neuritis Óptica/diagnóstico por imagen , Curva ROC
5.
Ecotoxicol Environ Saf ; 270: 115861, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38154153

RESUMEN

As agents in an emerging technology, Hermetia illucens (Linnaeus, 1758) (Diptera: Stratiomyidae) larvae, black soldier fly, have shown exciting potential for degrading antibiotics in organic solid waste, a process for which gut microorganisms play an important role. This study investigated the characteristics of larval gut bacterial communities effected by typical antibiotics. Initially, antibiotics significantly reduced the diversity of gut bacterial species. After 8 days, diversity recovered to similar to that of the control group in the chlortetracycline, tylosin, and sulfamethoxazole groups. Proteobacteria, Firmicutes, and Actinobacteriota were the dominant phyla at the initial BSFL gut. However, after 4 days treatment, the proportion of Actinobacteriota significantly decreased, but Bacteroidota notably increased. During the conversion process, 18, 18, 17, 21, and 19 core genera were present in the chlortetracycline, sulfamethoxazole, tylosin, norfloxacin, and gentamicin groups, respectively. Pseudomonas, Actinomyces, Morganella, Providencia and Klebsiella might be the important genera with extraordinary resistance and degradation to antibiotics. Statistical analyses of COGs showed that antibiotics changed the microbial community functions of BSFL gut. Compared with the control group, (i) the chlortetracycline, sulfamethoxazole, and tylosin groups showed significant increase in the classification functions of transcription, RNA processing and modification,and so on, (ii) the norfloxacin and gentamicin groups showed significant increase in defense mechanisms and other functions. Note that we categorized the response mechanisms of these classification functions to antibiotics into resistance and degradation. This provides a new perspective to deeply understand the joint biodegradation behavior of antibiotics in environments, and serves as an important reference for further development and utilization of microorganisms-assisted larvae for efficient degradation of antibiotics.


Asunto(s)
Clortetraciclina , Dípteros , Microbioma Gastrointestinal , Animales , Dípteros/fisiología , Larva , Antibacterianos/farmacología , Norfloxacino , Tilosina , Bacterias , Sulfametoxazol , Gentamicinas
6.
J Environ Manage ; 348: 119156, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37837764

RESUMEN

Black soldier fly larvae (BSFL) have potential utility in converting livestock manure into larval biomass as a protein source for livestock feed. However, BSFL have limited ability to convert dairy manure (DM) rich in lignocellulose. Our previous research demonstrated that feeding BSFL with mixtures of 40% dairy manure and 60% chicken manure (DM40) provides a novel strategy for significantly improving their efficiency in converting DM. However, the mechanisms underlying the efficient conversion of DM40 by BSFL are unclear. In this study, we conducted a holistic study on the taxonomic stucture and potential functions of microbiota in the larval gut and manure during the DM and DM40 conversion by BSFL, as well as the effects of BSFL on cellulosic biodegradation and biomass production. Results showed that BSFL can consume cellulose and other nutrients more effectively and harvest more biomass in a shorter conversion cycle in the DM40 system. The larval gut in the DM40 system yielded a higher microbiota complexity. Bacillus and Amphibacillus in the BSFL gut were strongly correlated with the larval cellulose degradation capacity. Furthermore, in vitro screening results for culturable cellulolytic microbes from the larval guts showed that the DM40 system isolated more cellulolytic microbes. A key bacterial strain (DM40L-LB110; Bacillus subtilis) with high cellulase activity from the larval gut of DM40 was validated for potential industrial applications. Therefore, mixing an appropriate proportion of chicken manure into DM increased the abundance of intestinal bacteria (Bacillus and Amphibacillus) producing cellulase and improved the digestion ability (particularly cellulose degradation) of BSFL to cellulose-rich manure through changes in microbial communities composition in intestine. This study reveals the microecological mechanisms underlying the high-efficiency conversion of cellulose-rich manure by BSFL and provide potential applications for the large-scale cellulose-rich wastes conversion by intestinal microbes combined with BSFL.


Asunto(s)
Celulasas , Dípteros , Animales , Larva , Estiércol , Pollos , Celulosa , Bacillus subtilis , Digestión
7.
Res Vet Sci ; 165: 105053, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37856945

RESUMEN

Circular RNAs (circRNAs) have a regulatory role in gene expression, development, differentiation, and immune response. In a previous study, circular RNA STX8 (circSTX8) exhibited low expression in chicken lungs during lipopolysaccharide (LPS) stimulation. PCR amplification and Sanger sequencing showed that circSTX8 was created by back-splicing of exons 5 to 6 of STX8. RNase R exonuclease treatment indicated that circSTX8 was a stable circular RNA. RT-qPCR showed that circSTX8 was highly expressed in cecum, spleen, harderian gland, stomach, thymus, liver, small intestine, and lung instead of that in muscle, cerebrum, and cerebellum (n = 8). Chicken macrophages were then divided into four groups: control, overexpression of circSTX8 group, LPS group, and overexpression of circSTX8 + LPS group. CCK8 and RT-qPCR showed that circSTX8 can exacerbate the cellular injury induced by LPS, resulting in a reduction of cell viability and an increase of the pro-inflammatory cytokines expression. In addition, four miRNAs were identified to interact with circSTX8, potentially targeting 914 genes, which were significantly enriched in the pathways of Tight junction, mTOR signaling pathway, MAPK signaling pathway, TGF-beta signaling pathway, Notch signaling pathway, ErbB signaling pathway, and Cell adhesion molecules. These findings showed that circSTX8 was able to regulate the LPS induced cellular immune and inflammatory response.


Asunto(s)
Pollos , ARN Circular , Animales , Pollos/genética , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Macrófagos/metabolismo , Transducción de Señal
8.
Ecotoxicol Environ Saf ; 266: 115551, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37832484

RESUMEN

The increasing prevalence of antibiotic-resistant bacteria (ARB) from animal manure has raised concerns about the potential threats to public health. The bioconversion of animal manure with insect larvae, such as the black soldier fly larvae (BSFL, Hermetia illucens [L.]), is a promising technology for quickly attenuating ARB while also recycling waste. In this study, we investigated BSFL conversion systems for chicken manure. Using metagenomic analysis, we tracked ARB and evaluated the resistome dissemination risk by investigating the co-occurrence of antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and bacterial taxa in a genetic context. Our results indicated that BSFL treatment effectively mitigated the relative abundance of ARB, ARGs, and MGEs by 34.9%, 53.3%, and 37.9%, respectively, within 28 days. Notably, the transferable ARGs decreased by 30.9%, indicating that BSFL treatment could mitigate the likelihood of ARG horizontal transfer and thus reduce the risk of ARB occurrence. In addition, the significantly positive correlation links between antimicrobial concentration and relative abundance of ARB reduced by 44.4%. Moreover, using variance partition analysis (VPA), we identified other bacteria as the most important factor influencing ARB, explaining 20.6% of the ARB patterns. Further analysis suggested that antagonism of other bacteria on ARB increased by 1.4 times, while nutrient competition on both total nitrogen and crude fat increased by 2.8 times. Overall, these findings provide insight into the mechanistic understanding of ARB reduction during BSFL treatment of chicken manure and provide a strategy for rapidly mitigating ARB in animal manure.


Asunto(s)
Dípteros , Estiércol , Animales , Larva/genética , Estiércol/análisis , Pollos/genética , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Dípteros/genética , Bacterias , Farmacorresistencia Microbiana , Genes Bacterianos , Antibacterianos/farmacología
9.
Biochem Genet ; 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37667096

RESUMEN

Cancer driver genes (CDGs) and the driver mutations disrupt the homeostasis of numerous critical cell activities, thereby playing a critical role in tumor initiation and progression. In this study, integrative bioinformatics analyses were performed based on a series of online databases, aiming to identify driver genes with high frequencies of mutations in head and neck cancers. Higher myeloma overexpressed (MYEOV) genetic variation frequency and expression level were connected to a poorer prognosis in head and neck cancer patients. MYEOV was dramatically upregulated within head and neck tumor samples and cells. Consistently, MYEOV overexpression remarkably enhanced the aggressiveness of head and neck cancer cells by promoting colony formation, cell invasion, and cell migration. Conversely, MYEOV knockdown attenuated cancer cell aggressiveness and inhibited tumor growth and metastasis in the oral orthotopic tumor model. In conclusion, MYEOV is overexpressed in head and neck cancer, with greater mutation frequencies correlating to a poorer prognosis in head and neck cancer patients. MYEOV serves as an oncogene in head and neck cancer through the promotion of tumor cell colony formation, invasion, and migration, as well as promoting tumor growth and metastasis in the oral orthotopic tumor model.

10.
J Environ Manage ; 346: 118945, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37717394

RESUMEN

Most fermentation waste filtrates can be used as raw materials for producing bio-fertilizers to reduce wastewater emissions and environmental pollution, but their bio-fertilizer utilization depends on the nutrients contained and their metabolized by functional microorganism. To achieve bio-fertilizer utilization of Acremonium terricola fermented waste filtrate, this study systematically explored the functional microbial species for making good use of waste liquid, optimized material process parameters for bio-fertilizer production based on D-optimal mixture design method, and analyzed the composition of the waste filtrate and its metabolism by functional microorganisms using a non-targeted LC-MS metagenomics technique. The results showed that Bacillus cereus was the functional microbial candidate for producing bio-fertilizer because of its more efficiently utilize the waste filtrate than other Bacillus sp. The optimal material process parameters of the liquid bio-fertilizer were the inoculum dose of 5% (v:v, %), 80% of waste filtrate, 0.25% of N, 3.5% of P2O5, 3.25% of K2O of mass percentage. Under these conditions, the colony forming unit (CFU) of Bacillus cereus could reach (1.59 ± 0.01) × 108 CFU/mL, which met the bio-fertilizer standard requirements of the People's Republic of China (NY/T798). Furthermore, the potential functions of bio-fertilizer were studied based on comparison of raw materials and production components: on the one hand, waste filtrate contained abundant of nitrogen and carbon sources, and bioactive substances secreted by Acremonium terricola, such as ß-alanyl-L-lysine, anserine, UMP, L-lactic acid and etc., which could meet the nutrient requirements of the growth of Bacillus cereus; On the other hand, some compounds of waste filtrate with the potential to benefit the plant growth and defense, such as betaine aldehyde, (2E,6E)-farnesol, homogentisic acid and etc., were significantly up regulated by Bacillus cereus utilization of the filtrate. To sum up, this work highlighted that the waste filtrate could be efficiently developed into liquid bio-fertilizer by Bacillus cereus.

11.
Adv Mater ; 35(45): e2303938, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37464982

RESUMEN

Achieving high-performance perovskite light-emitting diodes (PeLEDs) with pure-red electroluminescence for practical applications remains a critical challenge because of the problematic luminescence property and spectral instability of existing emitters. Herein, high-efficiency Rec. 2020 pure-red PeLEDs, simultaneously exhibiting exceptional brightness and spectral stability, based on CsPb(Br/I)3 perovskite nanocrystals (NCs) capping with aromatic amino acid ligands featuring cation-π interactions, are reported. It is proven that strong cation-π interactions between the PbI6 -octahedra of perovskite units and the electron-rich indole ring of tryptophan (TRP) molecules not only chemically polish the imperfect surface sites, but also markedly increase the binding affinity of the ligand molecules, leading to high photoluminescence quantum yields and greatly enhanced spectral stability of the CsPb(Br/I)3 NCs. Moreover, the incorporation of small-size aromatic TRP ligands ensures superior charge-transport properties of the assembled emissive layers. The resultant devices emitting at around 635 nm demonstrate a champion external quantum efficiency of 22.8%, a max luminance of 12 910 cd m-2 , and outstanding spectral stability, representing one of the best-performing Rec. 2020 pure-red PeLEDs achieved so far.

12.
Immunity ; 56(6): 1187-1203.e12, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37160118

RESUMEN

B7 ligands (CD80 and CD86), expressed by professional antigen-presenting cells (APCs), activate the main co-stimulatory receptor CD28 on T cells in trans. However, in peripheral tissues, APCs expressing B7 ligands are relatively scarce. This raises the questions of whether and how CD28 co-stimulation occurs in peripheral tissues. Here, we report that CD8+ T cells displayed B7 ligands that interacted with CD28 in cis at membrane invaginations of the immunological synapse as a result of membrane remodeling driven by phosphoinositide-3-kinase (PI3K) and sorting-nexin-9 (SNX9). cis-B7:CD28 interactions triggered CD28 signaling through protein kinase C theta (PKCθ) and promoted CD8+ T cell survival, migration, and cytokine production. In mouse tumor models, loss of T cell-intrinsic cis-B7:CD28 interactions decreased intratumoral T cells and accelerated tumor growth. Thus, B7 ligands on CD8+ T cells can evoke cell-autonomous CD28 co-stimulation in cis in peripheral tissues, suggesting cis-signaling as a general mechanism for boosting T cell functionality.


Asunto(s)
Antígenos CD28 , Linfocitos T CD8-positivos , Ratones , Animales , Antígenos CD28/metabolismo , Antígenos CD/metabolismo , Ligandos , Membranas Sinápticas/metabolismo , Antígeno B7-2 , Glicoproteínas de Membrana/metabolismo , Antígeno B7-1/metabolismo , Moléculas de Adhesión Celular , Activación de Linfocitos
13.
JCI Insight ; 8(13)2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37219949

RESUMEN

Human patients carrying genetic mutations in RNA binding motif 20 (RBM20) develop a clinically aggressive dilated cardiomyopathy (DCM). Genetic mutation knockin (KI) animal models imply that altered function of the arginine-serine-rich (RS) domain is crucial for severe DCM. To test this hypothesis, we generated an RS domain deletion mouse model (Rbm20ΔRS). We showed that Rbm20ΔRS mice manifested DCM with mis-splicing of RBM20 target transcripts. We found that RBM20 was mis-localized to the sarcoplasm in Rbm20ΔRS mouse hearts and formed RBM20 granules similar to those detected in mutation KI animals. In contrast, mice lacking the RNA recognition motif showed similar mis-splicing of major RBM20 target genes but did not develop DCM or exhibit RBM20 granule formation. Using in vitro studies with immunocytochemical staining, we demonstrated that only DCM-associated mutations in the RS domain facilitated RBM20 nucleocytoplasmic transport and promoted granule assembly. Further, we defined the core nuclear localization signal (NLS) within the RS domain of RBM20. Mutation analysis of phosphorylation sites in the RS domain suggested that this modification may be dispensable for RBM20 nucleocytoplasmic transport. Collectively, our findings revealed that disruption of RS domain-mediated nuclear localization is crucial for severe DCM caused by NLS mutations.


Asunto(s)
Cardiomiopatía Dilatada , Humanos , Ratones , Animales , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Empalme del ARN , Mutación , Motivos de Unión al ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
14.
J Exp Med ; 220(7)2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37042938

RESUMEN

CD28 and CTLA4 are T cell coreceptors that competitively engage B7 ligands CD80 and CD86 to control adaptive immune responses. While the role of CTLA4 in restraining CD28 costimulatory signaling is well-established, the mechanism has remained unclear. Here, we report that human T cells acquire antigen-presenting-cell (APC)-derived B7 ligands and major histocompatibility complex (MHC) via trogocytosis through CD28:B7 binding. Acquired MHC and B7 enabled T cells to autostimulate, and this process was limited cell-intrinsically by CTLA4, which depletes B7 ligands trogocytosed or endogenously expressed by T cells through cis-endocytosis. Extending this model to the previously proposed extrinsic function of CTLA4 in human regulatory T cells (Treg), we show that blockade of either CD28 or CTLA4 attenuates Treg-mediated depletion of APC B7, indicating that trogocytosis and CTLA4-mediated cis-endocytosis work together to deplete B7 from APCs. Our study establishes CTLA4 as a cell-intrinsic molecular sink that limits B7 availability on the surface of T cells, with implications for CTLA4-targeted therapy.


Asunto(s)
Antígenos CD28 , Inmunoconjugados , Humanos , Antígeno CTLA-4/metabolismo , Antígenos CD28/metabolismo , Antígenos CD/metabolismo , Ligandos , Antígenos de Diferenciación , Abatacept/farmacología , Antígeno B7-2 , Glicoproteínas de Membrana/metabolismo , Antígeno B7-1/metabolismo , Moléculas de Adhesión Celular
15.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37108419

RESUMEN

The porcine body length trait is an essential factor affecting meat production and reproductive performance. It is evident that the development/lengthening of individual vertebrae is one of the main reasons for increases in body length; however, the underlying molecular mechanism remains unclear. In this study, RNA-seq analysis was used to profile the transcriptome (lncRNA, mRNA, and miRNA) of the thoracic intervertebral cartilage (TIC) at two time points (1 and 4 months) during vertebral column development in Yorkshire (Y) and Wuzhishan pigs (W). There were four groups: 1- (Y1) and 4-month-old (Y4) Yorkshire pigs and 1- (W1) and 4-month-old (W4) Wuzhishan pigs. In total, 161, 275, 86, and 126 differentially expressed (DE) lncRNAs, 1478, 2643, 404, and 750 DE genes (DEGs), and 74,51, 34, and 23 DE miRNAs (DE miRNAs) were identified in the Y4 vs. Y1, W4 vs. W1, Y4 vs. W4, and Y1 vs. W1 comparisons, respectively. Functional analysis of these DE transcripts (DETs) demonstrated that they had participated in various biological processes, such as cellular component organization or biogenesis, the developmental process, the metabolic process, bone development, and cartilage development. The crucial bone development-related candidate genes NK3 Homeobox 2 (NKX3.2), Wnt ligand secretion mediator (WLS), gremlin 1 (GREM1), fibroblast growth factor receptor 3 (FGFR3), hematopoietically expressed homeobox (HHEX), (collagen type XI alpha 1 chain (COL11A1), and Wnt Family Member 16 (WNT16)) were further identified by functional analysis. Moreover, lncRNA, miRNA, and gene interaction networks were constructed; a total of 55 lncRNAs, 6 miRNAs, and 7 genes formed lncRNA-gene, miRNA-gene, and lncRNA-miRNA-gene pairs, respectively. The aim was to demonstrate that coding and non-coding genes may co-regulate porcine spine development through interaction networks. NKX3.2 was identified as being specifically expressed in cartilage tissues, and it delayed chondrocyte differentiation. miRNA-326 regulated chondrocyte differentiation by targeting NKX3.2. The present study provides the first non-coding RNA and gene expression profiles in the porcine TIC, constructs the lncRNA-miRNA-gene interaction networks, and confirms the function of NKX3.2 in vertebral column development. These findings contribute to the understanding of the potential molecular mechanisms regulating pig vertebral column development. They expand our knowledge about the differences in body length between different pig species and provide a foundation for future studies.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Porcinos , Animales , Transcriptoma , ARN Largo no Codificante/genética , Condrocitos , MicroARNs/genética , Redes Reguladoras de Genes , Perfilación de la Expresión Génica
16.
Waste Manag ; 163: 85-95, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37003117

RESUMEN

The black soldier fly larvae (BSFL) can transform organic waste into high-end proteins, lipids, chitin, biodiesel, and melanin at an industrial scale. But scaling up of its production capacity has also posed health risks to the insect itself. In this investigation, larval "soft rot" which is occurring in mass production facilities that cause larval developmental inhibition and a certain degree of death was reported. Responsible pathogen GX6 was isolated from BSFL with "soft rot" and identified to be Paenibacillus thiaminolyticus. No obvious impact on larval growth was observed when treated with GX6 spores, whereas mortality of 6-day-old BSFL increased up to 29.33% ± 2.05% when GX6 vegetative cells (1 × 106 cfu/g) were inoculated into the medium. Moreover, higher temperature further enhanced the BSFL mortality and suppressed larval development, but increasing substrate moisture showed the opposite effect. The middle intestine of infected larvae became swollen and transparent after dissection and examination. Transmission electron microscopy (TEM) observation indicated that GX6 had destroyed the peritrophic matrix and intestinal microvilli and damaged epithelial cells of larval gut. Furthermore, 16S rRNA gene sequencing analysis of intestinal samples revealed that gut microflora composition was significantly altered by GX6 infection as well. It can be noticed that Dysgonomonas, Morganella, Myroides, and Providencia bacteria became more numerous in the intestines of GX6-infected BSFL as compared to controls. This study will lay foundations for efficient control of "soft rot" and promote healthy development of the BSFL industry to contribute to organic waste management and circular economy.


Asunto(s)
Dípteros , Animales , Larva/metabolismo , Incidencia , ARN Ribosómico 16S/metabolismo , Dípteros/metabolismo , Bacterias
17.
Plants (Basel) ; 12(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36986910

RESUMEN

The lotus (Nelumbo Adans.) is one of the most economically relevant ornamental aquatic plants. Plant architecture (PA) is an important trait for lotus classification, cultivation, breeding, and applications. However, the underlying genetic and molecular basis controlling PA remains poorly understood. In this study, an association study for PA-related traits was performed with 93 genome-wide microsatellite markers (simple sequence repeat, SSR) and 51 insertion-deletion (InDel) markers derived from the candidate regions using a panel of 293 lotus accessions. Phenotypic data analysis of the five PA-related traits revealed a wide normal distribution and high heritability from 2013 to 2016, which indicated that lotus PA-related traits are highly polygenic traits. The population structure (Q-matrix) and the relative kinships (K-matrix) of the association panels were analyzed using 93 SSR markers. The mixed linear model (MLM) taking Q-matrix and K-matrix into account was used to estimate the association between markers and the traits. A total of 26 markers and 65 marker-trait associations were identified by considering associations with p < 0.001 and Q < 0.05. Based on the significant markers, two QTLs on Chromosome 1 were identified, and two candidate genes were preliminarily determined. The results of our study provided useful information for the lotus breeding aiming at different PA phenotypes using a molecular-assisted selection (MAS) method and also laid the foundation for the illustration of the molecular mechanism underlying the major QTL and key markers associated with lotus PA.

18.
Sci Total Environ ; 879: 163065, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966826

RESUMEN

The increasing prevalence of antibiotic resistance genes (ARGs) in animal manure has attracted considerable attention because of their potential contribution to the development of multidrug resistance worldwide. Insect technology may be a promising alternative for the rapid attenuation of ARGs in manure; however, the underlying mechanism remains unclear. This study aimed to evaluate the effects of black soldier fly (BSF, Hermetia illucens [L.]) larvae conversion combined with composting on ARGs dynamics in swine manure and to uncover the mechanisms through metagenomic analysis. Compared to natural composting (i.e. without BSF), BSFL conversion combined with composting reduced the absolute abundance of ARGs by 93.2 % within 28 days. The rapid degradation of antibiotics and nutrient reformulation during BSFL conversion combined with composting indirectly altered manure bacterial communities, resulting in a lower abundance and richness of ARGs. The number of main antibiotic-resistant bacteria (e.g., Prevotella, Ruminococcus) decreased by 74.9 %, while their potential antagonistic bacteria (e.g., Bacillus, Pseudomonas) increased by 128.7 %. The number of antibiotic-resistant pathogenic bacteria (e.g., Selenomonas, Paenalcaligenes) decreased by 88.3 %, and the average number of ARGs carried by each human pathogenic bacterial genus declined by 55.8 %. BSF larvae gut microbiota (e.g., Clostridium butyricum, C. bornimense) could help reduce the risk of multidrug-resistant pathogens. These results provide insight into a novel approach to mitigate multidrug resistance from the animal industry in the environment by using insect technology combined with composting, in particular in light of the global "One Health" requirements.


Asunto(s)
Compostaje , Dípteros , Humanos , Porcinos , Animales , Larva , Estiércol/microbiología , Antibacterianos/farmacología , Bacterias/genética , Genes Bacterianos
19.
bioRxiv ; 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36798339

RESUMEN

Richter's transformation (RT) is a progression of chronic lymphocytic leukemia (CLL) to aggressive lymphoma. MGA ( Max gene associated ), a functional MYC suppressor, is mutated at 3% in CLL and 36% in RT. However, genetic models and molecular mechanisms of MGA deletion driving CLL to RT remain elusive. We established a novel RT mouse model by knockout of Mga in the Sf3b1 / Mdr CLL model via CRISPR-Cas9 to determine the role of Mga in RT. Murine RT cells exhibit mitochondrial aberrations with elevated oxidative phosphorylation (OXPHOS). We identified Nme1 (Nucleoside diphosphate kinase) as a Mga target through RNA sequencing and functional characterization, which drives RT by modulating OXPHOS. As NME1 is also a known MYC target without targetable compounds, we found that concurrent inhibition of MYC and ETC complex II significantly prolongs the survival of RT mice in vivo . Our results suggest that Mga-Nme1 axis drives murine CLL-to-RT transition via modulating OXPHOS, highlighting a novel therapeutic avenue for RT. Statement of Significance: We established a murine RT model through knockout of Mga in an existing CLL model based on co-expression of Sf3b1 -K700E and del ( 13q ). We determined that the MGA/NME1 regulatory axis is essential to the CLL-to-RT transition via modulation of mitochondrial OXPHOS, highlighting this pathway as a novel target for RT treatment.

20.
Insect Sci ; 30(4): 975-990, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36773298

RESUMEN

The black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), is an insect commonly used for the bioconversion of various organic wastes. Not only can the BSF convert organic waste into macromolecular organic substances, such as insect proteins, but it can also lessen the pollution associated with these waste products by reducing ammonia emissions, for example. In this study, we measured the effects of adding fruit fermentation broth (Fer) and commercial lactic acid bacteria fermentation broth (Em) to kitchen waste (KW), as deodorizing auxiliary substances, on the growth performance of black soldier fly larvae (BSFL), the intestinal flora structure of BSFL, the ammonia emission from the KW substrate, and the microbial community structure of the KW substrate. We found that the addition of Fer or Em increased the body weight of BSFL after 6 d of culture, increasing the growth rate by 9.96% and 7.96%, respectively. The addition of Fer not only reduced the pH of the KW substrate but also increased the relative abundance of probiotics, such as Lactobacillus, Lysinibacillus, and Vagococcus, which inhibited the growth of ammonifiers such as Bacillus, Oligella, Paenalcaligenes, Paenibacillus, Pseudogracilibacillus, and Pseudomonas, resulting in the reduction of ammonia emission in the KW substrate. Moreover, the addition of Fer or Em significantly increased the relative abundances of Bacteroides, Campylobacter, Dysgonomonas, Enterococcus, and Ignatzschineria in the gut of BSFL and increased the species diversity and richness in the KW substrate. Our findings provide a novel way to improve the conversion rate of organic waste and reduce the environmental pollution caused by BSF.


Asunto(s)
Amoníaco , Dípteros , Animales , Larva , Frutas , Fermentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...